The quality of laser welding depends on a balanced combination of laser selection, laser process parameters (power, speed, focus, pulse), material properties (absorptivity, thickness, composition), material geometry, and environmental control (protection, cleanliness, fixtures). The saved experimental data sheets and the comparison results among fiber lasers, CO2 lasers, and semiconductor lasers should serve as reliable initial references. For each new material and joint design, establish a small parameter matrix to determine stable and repeatable settings.
When using consumer-grade or compact multi-functional laser welding systems, select equipment with flexible power, focusing, and pulse adjustment capabilities and excellent beam quality (M² value close to 1.1 - 1.5). Such systems are more likely to replicate laboratory-level results in actual products.
XLaserlab's X1 and X1 Pro embody these principles. The X1 uses semiconductor lasers, enabling clean and precise pulsed welding of ultra-thin components (0.2 - 2 mm), while being portable and easy to integrate into test fixtures. The X1 Pro's 700-watt fiber laser offers both continuous and pulsed modes, providing better control and increased speed, and can handle a wider range of materials (0.5 - 3 mm), including galvanized steel, copper, and brass. The fine focusing of the fiber beam of light combined with flexible parameter control helps you seamlessly apply optimized laboratory recipes to high-volume, high-quality production.